When plotting a bar chart in Pandas, you can assign different colors to bars using the color parameter.

Data

Category Values
0 A 10
1 B 20
2 C 15
3 D 25

1: Basic Bar Chart with Custom Colors

import pandas as pd
import matplotlib.pyplot as plt

# Sample data
data = {'Category': ['A', 'B', 'C', 'D'],
        'Values': [10, 20, 15, 25]}
df = pd.DataFrame(data)

# Plot with different colors
df.plot(kind='bar', x='Category', y='Values', color=['red', 'blue', 'green', 'orange'])

plt.show()

2: Assign Colors Dynamically Based on Values

colors = ['red' if v > 15 else 'blue' for v in df['Values']]
df.plot(kind='bar', x='Category', y='Values', color=colors)

plt.show()

3: Using Colormap for Gradient Colors

df.plot(kind='bar', x='Category', y='Values', colormap='viridis')
plt.show()

This approach makes your bar charts visually appealing and easy to interpret!

Resources